\(\int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx\) [151]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 40, antiderivative size = 142 \[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=\frac {(5 A+B) c^2 \cos (e+f x) (a+a \sin (e+f x))^{5/2}}{30 f \sqrt {c-c \sin (e+f x)}}+\frac {(5 A+B) c \cos (e+f x) (a+a \sin (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{20 f}-\frac {B \cos (e+f x) (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}{5 f} \]

[Out]

-1/5*B*cos(f*x+e)*(a+a*sin(f*x+e))^(5/2)*(c-c*sin(f*x+e))^(3/2)/f+1/30*(5*A+B)*c^2*cos(f*x+e)*(a+a*sin(f*x+e))
^(5/2)/f/(c-c*sin(f*x+e))^(1/2)+1/20*(5*A+B)*c*cos(f*x+e)*(a+a*sin(f*x+e))^(5/2)*(c-c*sin(f*x+e))^(1/2)/f

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {3052, 2819, 2817} \[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=\frac {c^2 (5 A+B) \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{30 f \sqrt {c-c \sin (e+f x)}}+\frac {c (5 A+B) \cos (e+f x) (a \sin (e+f x)+a)^{5/2} \sqrt {c-c \sin (e+f x)}}{20 f}-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{3/2}}{5 f} \]

[In]

Int[(a + a*Sin[e + f*x])^(5/2)*(A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^(3/2),x]

[Out]

((5*A + B)*c^2*Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2))/(30*f*Sqrt[c - c*Sin[e + f*x]]) + ((5*A + B)*c*Cos[e +
 f*x]*(a + a*Sin[e + f*x])^(5/2)*Sqrt[c - c*Sin[e + f*x]])/(20*f) - (B*Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2)
*(c - c*Sin[e + f*x])^(3/2))/(5*f)

Rule 2817

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rule 2819

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Dist[a*((2*m - 1)/(
m + n)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
 EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m
]) &&  !(ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])

Rule 3052

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(f*
(m + n + 1))), x] - Dist[(B*c*(m - n) - A*d*(m + n + 1))/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^m*(c + d*Si
n[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] &&
  !LtQ[m, -2^(-1)] && NeQ[m + n + 1, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {B \cos (e+f x) (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}{5 f}+\frac {1}{5} (5 A+B) \int (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2} \, dx \\ & = \frac {(5 A+B) c \cos (e+f x) (a+a \sin (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{20 f}-\frac {B \cos (e+f x) (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}{5 f}+\frac {1}{10} ((5 A+B) c) \int (a+a \sin (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)} \, dx \\ & = \frac {(5 A+B) c^2 \cos (e+f x) (a+a \sin (e+f x))^{5/2}}{30 f \sqrt {c-c \sin (e+f x)}}+\frac {(5 A+B) c \cos (e+f x) (a+a \sin (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{20 f}-\frac {B \cos (e+f x) (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}{5 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.37 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.16 \[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=-\frac {c (-1+\sin (e+f x)) (a (1+\sin (e+f x)))^{5/2} \sqrt {c-c \sin (e+f x)} (4 (100 A+11 B) \sin (e+f x)+4 \cos (2 (e+f x)) (-15 (A+B)+4 (5 A-2 B) \sin (e+f x))-3 \cos (4 (e+f x)) (5 (A+B)+4 B \sin (e+f x)))}{480 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^5} \]

[In]

Integrate[(a + a*Sin[e + f*x])^(5/2)*(A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^(3/2),x]

[Out]

-1/480*(c*(-1 + Sin[e + f*x])*(a*(1 + Sin[e + f*x]))^(5/2)*Sqrt[c - c*Sin[e + f*x]]*(4*(100*A + 11*B)*Sin[e +
f*x] + 4*Cos[2*(e + f*x)]*(-15*(A + B) + 4*(5*A - 2*B)*Sin[e + f*x]) - 3*Cos[4*(e + f*x)]*(5*(A + B) + 4*B*Sin
[e + f*x])))/(f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^5)

Maple [A] (verified)

Time = 3.61 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.93

method result size
default \(\frac {a^{2} c \tan \left (f x +e \right ) \left (12 B \left (\sin ^{2}\left (f x +e \right )\right ) \left (\cos ^{2}\left (f x +e \right )\right )+15 A \sin \left (f x +e \right ) \left (\cos ^{2}\left (f x +e \right )\right )-15 B \left (\sin ^{3}\left (f x +e \right )\right )+20 A \left (\cos ^{2}\left (f x +e \right )\right )+8 B \left (\sin ^{2}\left (f x +e \right )\right )+15 A \sin \left (f x +e \right )+30 B \sin \left (f x +e \right )+40 A \right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+\sin \left (f x +e \right )\right )}}{60 f}\) \(132\)
parts \(\frac {A \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, c \,a^{2} \left (-3 \left (\cos ^{3}\left (f x +e \right )\right )+4 \cos \left (f x +e \right ) \sin \left (f x +e \right )+8 \tan \left (f x +e \right )+3 \sec \left (f x +e \right )\right )}{12 f}-\frac {B \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, c \,a^{2} \left (12 \left (\cos ^{3}\left (f x +e \right )\right ) \sin \left (f x +e \right )+15 \left (\cos ^{3}\left (f x +e \right )\right )-4 \cos \left (f x +e \right ) \sin \left (f x +e \right )-8 \tan \left (f x +e \right )-15 \sec \left (f x +e \right )\right )}{60 f}\) \(170\)

[In]

int((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/60*a^2*c/f*tan(f*x+e)*(12*B*sin(f*x+e)^2*cos(f*x+e)^2+15*A*sin(f*x+e)*cos(f*x+e)^2-15*B*sin(f*x+e)^3+20*A*co
s(f*x+e)^2+8*B*sin(f*x+e)^2+15*A*sin(f*x+e)+30*B*sin(f*x+e)+40*A)*(-c*(sin(f*x+e)-1))^(1/2)*(a*(1+sin(f*x+e)))
^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.84 \[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=-\frac {{\left (15 \, {\left (A + B\right )} a^{2} c \cos \left (f x + e\right )^{4} - 15 \, {\left (A + B\right )} a^{2} c + 4 \, {\left (3 \, B a^{2} c \cos \left (f x + e\right )^{4} - {\left (5 \, A + B\right )} a^{2} c \cos \left (f x + e\right )^{2} - 2 \, {\left (5 \, A + B\right )} a^{2} c\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{60 \, f \cos \left (f x + e\right )} \]

[In]

integrate((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

-1/60*(15*(A + B)*a^2*c*cos(f*x + e)^4 - 15*(A + B)*a^2*c + 4*(3*B*a^2*c*cos(f*x + e)^4 - (5*A + B)*a^2*c*cos(
f*x + e)^2 - 2*(5*A + B)*a^2*c)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(f*cos(f*x +
e))

Sympy [F(-1)]

Timed out. \[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sin(f*x+e))**(5/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=\int { {\left (B \sin \left (f x + e\right ) + A\right )} {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^(5/2)*(-c*sin(f*x + e) + c)^(3/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 341 vs. \(2 (124) = 248\).

Time = 0.44 (sec) , antiderivative size = 341, normalized size of antiderivative = 2.40 \[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=-\frac {4 \, {\left (24 \, B a^{2} c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{10} - 15 \, A a^{2} c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{8} - 75 \, B a^{2} c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{8} + 40 \, A a^{2} c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6} + 80 \, B a^{2} c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6} - 30 \, A a^{2} c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 30 \, B a^{2} c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4}\right )} \sqrt {a} \sqrt {c}}{15 \, f} \]

[In]

integrate((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

-4/15*(24*B*a^2*c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*
x + 1/2*e)^10 - 15*A*a^2*c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi
 + 1/2*f*x + 1/2*e)^8 - 75*B*a^2*c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin
(-1/4*pi + 1/2*f*x + 1/2*e)^8 + 40*A*a^2*c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2
*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^6 + 80*B*a^2*c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f
*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^6 - 30*A*a^2*c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi
 + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^4 - 30*B*a^2*c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin
(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^4)*sqrt(a)*sqrt(c)/f

Mupad [B] (verification not implemented)

Time = 16.44 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.23 \[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=-\frac {a^2\,c\,\sqrt {a\,\left (\sin \left (e+f\,x\right )+1\right )}\,\sqrt {-c\,\left (\sin \left (e+f\,x\right )-1\right )}\,\left (60\,A\,\cos \left (e+f\,x\right )+60\,B\,\cos \left (e+f\,x\right )+75\,A\,\cos \left (3\,e+3\,f\,x\right )+15\,A\,\cos \left (5\,e+5\,f\,x\right )+75\,B\,\cos \left (3\,e+3\,f\,x\right )+15\,B\,\cos \left (5\,e+5\,f\,x\right )-400\,A\,\sin \left (2\,e+2\,f\,x\right )-40\,A\,\sin \left (4\,e+4\,f\,x\right )-50\,B\,\sin \left (2\,e+2\,f\,x\right )+16\,B\,\sin \left (4\,e+4\,f\,x\right )+6\,B\,\sin \left (6\,e+6\,f\,x\right )\right )}{480\,f\,\left (\cos \left (2\,e+2\,f\,x\right )+1\right )} \]

[In]

int((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(5/2)*(c - c*sin(e + f*x))^(3/2),x)

[Out]

-(a^2*c*(a*(sin(e + f*x) + 1))^(1/2)*(-c*(sin(e + f*x) - 1))^(1/2)*(60*A*cos(e + f*x) + 60*B*cos(e + f*x) + 75
*A*cos(3*e + 3*f*x) + 15*A*cos(5*e + 5*f*x) + 75*B*cos(3*e + 3*f*x) + 15*B*cos(5*e + 5*f*x) - 400*A*sin(2*e +
2*f*x) - 40*A*sin(4*e + 4*f*x) - 50*B*sin(2*e + 2*f*x) + 16*B*sin(4*e + 4*f*x) + 6*B*sin(6*e + 6*f*x)))/(480*f
*(cos(2*e + 2*f*x) + 1))